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Abstract: The problem of localizing objects exploiting RSSI signals has been tackled using both geometric and machine
learning based methods. Solutions machine learning based have the advantage to better cope with noise, but
require many radio signal observations associated to the correct position in the target space. This data collec-
tion and labeling process is not trivial and it typically requires building a grid of dense observations, which
can be resource-intensive. To overcome this issue, we propose a pipeline which uses an autonomous robot to
collect RSSI-image pairs and Structure from Motion to associate 2D positions to the RSSI values based on the
inferred position of each image. This method, as we shown in the paper, allows to acquire large quantities of
data in an inexpensive way. Using the collected data, we experiment with machine learning models based on
RNNs and propose an optimized model composed of a set of LSTMs that specialize on the RSSI observations
coming from different antennas. The proposed method shows promising results outperforming different base-
lines, suggesting that the proposed pipeline allowing to collect and automatically label observations is useful
in real scenarios. Furthermore, to aid research in this area, we publicly release the collected dataset comprising
57158 RSSI observations paired with RGB images.

1 Introduction

Being able to infer the position of an object, a person
or a robot in an environment is an important task for
many applications including tracking goods in a ware-
house, helping people to localize themselves (Furnari
et al., 2016; Battiato et al., 2009) and navigate an en-
vironment, or predicting their intent (Kamali, 2019;
Häne et al., 2017; Gupta et al., 2017; Ragusa et al.,
2020; Furnari et al., 2018). To tackle this problem,
different technologies have been used so far: GPS,
radio-wave signals, laser ranging scanners, and cam-
eras (Xiao et al., 2016). Among these approaches,
we focus on radio-wave signals, which are convenient
thanks to cheap and unobtrusive hardware solutions,
which work also in indoor settings (e.g., based on
WiFi or Bluetooth).

Localization through radio-wave signals lever-
ages the processing of RSSI values (Received Signal
Strength Indication - a measure of the power of a ra-
dio signal) observed by a beacon attached to the ob-
ject to be localized while receiving signals from a set
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Figure 1: Classic manual fingerprinting compared to the
proposed approach.

of antennas placed at known locations (Zafari et al.,
2019). Since RSSI values can be used to estimate
the distance between the observer (the object to be
localized) and the signal emitter (an antenna placed at
the known location), geometric methods can be used
to estimate the target location directly. However, the
feasibility of this method is hindered by the fact that



RSSI values tend to have two main limitations: ambi-
guity, i.e. two different devices at the same position
can measure different RSSI values (and vice-versa),
and instability, i.e., objects present in the environ-
ment, other radio signals or external factors (e.g. an
electrical station with radio base antennas) can create
noise, disturb the radio signal and make the measure
less reliable. These limitations can be partially tack-
led using approaches based on machine learning (Za-
fari et al., 2019). Such approaches rely on a set of
offline RSSI measurements associated to target po-
sitions which are used as a set of “examples” indi-
cating the relationship between observed values and
target positions. These observations are used to train
a machine learning model such as an artificial neu-
ral network. The model is then able, at run time, to
estimate the position from newly observed RSSI val-
ues. The main advantage of this approach is that the
trained algorithm can implicitly model sensor noise
as well as the positions of the antennas, which hence
do not need to be known beforehand. On the down-
side, collecting RSSI and target position pairs is gen-
erally a non-trivial task and often involves performing
measurements at known positions sampled through a
dense grid over the environment see Figure 1. This
manual process is often time-consuming, tedious, and
prone to error.

In this work, we propose to leverage an au-
tonomous robot randomly moving in the target en-
vironment to densely collect RSSI observations at
various locations. Each RSSI value is associated to
an image captured from the robot’s point of view.
We then use structure from motion (SfM) to cre-
ate a 3D model of the environment. By relying on
a small set of images captured at known positions,
we recover the correct scale and orientation of the
3D model. At the end of this process, each image,
and hence each RSSI observation, is associated to a
position within the environment, which can be used
to form < RSSI, target position > pairs suitable for
model training. It is worth noting that, differently
from previous works relying on RSSI observations
manually acquired at known locations, the proposed
procedure is automatic and naturally allows to ob-
tain a large quantity of examples. Figure 1 illustrates
the proposed data acquisition pipeline, which is de-
scribed in details in Section 3. To study the suitabil-
ity of the proposed pipeline to tackle the localization
problem, we collect a dataset in an office environment
and benchmark different neural network approaches.
Results show that a model based on a set of Long-
Short Term Memory (LSTM) networks specialized on
the values coming from the different antennas obtains
best results, which is an approach made possible by

the large amount of labeled examples gathered with
the proposed pipeline.

The main contributions of this work are as fol-
lows: 1) we propose a pipeline to collect and automat-
ically label RSSI observations, exploiting a mobile
robot and structure from motion techniques, 2) fol-
lowing the proposed pipeline, we collect and release1

a dataset suitable to study indoor localization through
RSSI values and machine learning, 3) we benchmark
different methods based on artificial neural networks
on the considered task and propose a method based
on LSTMs which achieves promising performance.

The remainder of the paper is organized as fol-
lows: Section 2 presents the state of the art in the
field, Section 3 describes the proposed pipeline and
presents the collected dataset, Section 4 presents the
proposed method, Section 5 introduces experiments
and show the results and finally Section 6 concludes
the paper.

2 Related Works

Our work is related to two research lines: localization
using radio signals and collection of datasets suitable
for localization. The following sections discuss the
relevant research works.

2.1 Localization using radio signals and
machine learning

Previous works have investigated methods to local-
ize a target in an environment using radio signals. In
this section, we focus on the approaches based on
machine learning. Two early works (Battiti et al.,
2002; Brunato and Battiti, 2005) performed indoor
localization using a Multi-Layer Perceptron, which
achieved results comparable with respect to a K
Nearest-Neighbors (KNN) algorithm in the localiza-
tion of a mobile device. The authors of (Obreja et al.,
2018) addressed the localization task leveraging a col-
lection of RSSI measurements obtained by 3 beacons.
The method used to retrieve the pose is a KNN ap-
proach which reaches an accuracy between 5 and 6
meters in an indoor environment of 98m2. I-KNN,
presented in (Kanaris et al., 2017), combines the BLE
Beacons technology with a radiomap created with Wi-
Fi RSSI information to improve localization. The
method obtains an average error of 2.58 meters in an
indoor environment of 160 m2. A feed-forward Multi-
Layer Perceptron was used in (Dai et al., 2016). The

1The dataset is available at the following URL:
https://iplab.dmi.unict.it/VisualRSSI
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Figure 2: Method used to collect the dataset automatically.

method is divided into three stages: a transforming
stage, a denoising stage and a locating stage. Local-
ization was tackled as a classification task by divid-
ing an environment of 144 m2 using grids of 1 m2,
1.5 m2 and 2 m2. Other works (Chen et al., 2015;
Deng et al., 2015; Lipka et al., 2019; Röbesaat et al.,
2017; Paul and Wan, 2009) used the Kalman filter to
denoise the observed RSSI values. In (Subedi et al.,
2016), an algorithm called Weighted Centroid Local-
ization (WCL) was proposed. The algorithm takes as
input a mobile average of ten RSSI samples and ap-
plies Kalman filter. The importance of each beacon
is hence weighed based on its distance from the RSSI
point, in order to calculate the coordinates of the de-
vice to be located. Due to the temporal nature of the
observed radio signals, recurrent units are suitable to
tackle the localization task from the RSSI values. The
authors of (Hoang et al., 2019) estimated the target
trajectory using a large amount of RSSI values col-
lected with mobile devices. The authors of (Xu et al.,
2019) used a LSTM to track a moving target through
decentralized sorting of RSSI values and using a GPU
to increase computation speed. The authors of (Ishi-
hara et al., 2017) propose to use both RSSI signals and
image content to improve smartphone localization.

Differently from the aforementioned works, we
propose a pipeline to collect a large amount of RSSI
values leveraging a mobile robot and structure from
motion techniques. We hence propose an approach
based on LSTMs which shows how this large amount
of labeled data can be effectively used to tackle the
localization problem.

2.2 Image-based localization datasets

Our research is also related to previous works focus-
ing on the creation of datasets for image-based lo-
calization. In (?) the Cambridge landmark dataset
was introduced. The dataset includes 5 different out-
door scenes and contains approximately 12,000 im-
ages tagged with 6 degrees of freedom (6DOF) cam-
era poses. Rome16k and Dubrovnik6k were proposed
in (Li et al., 2009) with 16,179 and 6,844 outdoor im-
ages downloaded from Flickr. The pose information
in both datasets was obtained using Structure From
Motion (Wu, 2013). In some cases, especially for
indoor environments, the use of dedicated hardware
is preferred over SfM. For example, the “7 scenes”
dataset (Shotton et al., 2013), which contains im-
ages from 7 indoor environments such as “Office” and
“Stairs” includes a total of 43,000 labeled frames, was
captured using a handheld Kinect RGBD sensor. An
indoor dataset covering an entire floor of a building
with a total area of 5,000 m2 is described in (Walch
et al., 2017). The dataset was acquired using a mo-
bile system equipped with six cameras and three laser
rangefinders and contains 1,095 high resolution im-
ages. The authors of (Sun et al., 2017) collected a
dataset for indoor localization in a shopping mall cov-
ering an area of 5,575 m2 using DSLR cameras for the
train set, while the test set consists of 2,000 photos
collected with mobile phones by different users. To
estimate camera poses, the authors used a 3D-2D fit
algorithm based on a 3D model obtained with a high-
precision LiDAR scanner.

Similarly to the aforementioned works, we col-
lect a dataset of images and use structure from mo-



Figure 3: Environment used for collecting the data. The
positions of the antennas placed in the environment are de-
noted by the “A” letters.

tion techniques to attach camera poses to the images.
However, differently from those, we aim to create
a high-quality dataset of RSSI values associated to
ground truth positions. Hence, the collected images
are used mainly as a means to automatically obtain a
ground truth signal in our work.

3 Proposed data acquisition pipeline
and collected dataset

The proposed automatic data acquisition and labeling
pipeline is depicted in Figure 2. The pipeline goes
through the following steps:

1. Visual RSSI Fingerprinting, in which we collect
different RSSI values and associate them to visual
observations in the form of RGB images;

2. Structure From Motion, which is used to associate
3D poses to each image, and hence to each RSSI
value;

3. Projection of the 3D poses to the 2D floor-plan
and exportation of the associated RSSI values use-
ful for training machine learning algorithms for
localization via radio signals.

The rest of this section details how we implemented
this pipeline in an indoor environment in order to gen-
erate a dataset suitable to study the localization prob-
lem.

RGB images with a resolution of 1280 x 720
and RSSI signals were collected in the environment
shown in figure 3. We have installed 5 antennas in or-
der to completely cover the environment. The chosen
space has a maximum length of 17.75m and a max-
imum width of 12.65m. The total area is approxi-
mately 160 m2. The environment is close to a power
plant, which introduces RSSI noise.

In order to have a high resolution map of the en-
vironment, we performed a dense sampling of RSSI
values using a Sanbot-Elf mobile robot2 to which we
attached a RealSense D435 camera3 and three Blue-
tooth Low Energy (BLE) beacons. We use three bea-
cons to have three different frequencies, obtaining a
more realistic setting and adding variability to the
dataset. The RealSense camera allows to capture and
stream video. Furthermore its good autofocus speed
enables capturing images without blur which are to
be preferred for good SfM results. BLE beacons are
a suitable class of devices to transmit RSSI values
because of the low energy consumption profile and
good working distances. The camera is connected to
a Raspberry PI 44 device attached to a powerbank.
The setup of the robot is shown in Figure 4.

Using the autonomous navigation capabilities
based on the on-board sensors of the robot, we let it
move randomly in all directions to cover all possible
positions in the environment. Apart from the three
beacons placed on the robot, the environment con-
tains seven additional beacons, which contribute to
increase the RSSI noise, and hence to reproduce a re-
alistic setup. At every second, the described platform
was used to collect images and receive signals from
the five antennas placed in the environment through
the three beacons.

We have collected the dataset during seven record-
ing sessions, each one lasting thirty minutes in or-
der to increase the variability of external and inter-
nal factors, such as RSSI noise by changing the time
of acquisition. Following this procedure, we gathered
64.478 images, each associated to the related RSSI
payloads.

To assign a set of coordinates to each image and
hence to the corresponding RSSI data, we built a
3D model using COLMAP (Schönberger and Frahm,
2016), a widely used Structure From Motion tool.
To recover the metrical scale of the environment, we
aligned the reconstructed model through the Manhat-
tan world alignment procedure included in COLMAP
using a small set of images captured at known posi-
tions. For each image, collected using the RealSense
camera, registered to the model, we exported 3D spa-
tial labels and projected them to the 2D plan corre-
sponding to the floor, thus obtaining two degrees of
freedom (2DoF) camera poses.

All the statistics of the created dataset are shown
in Table 1. The dataset was split into train, testing
and validation sets using 70%, 20% and 10% of the

2http://en.sanbot.com/product/sanbot-elf/design
3https://www.intel.com/content/www/us/en/architecture-

and-technology/realsense-overview.html
4https://www.raspberrypi.org/



Figure 4: Proposed robotic platform based on Sanbot robot
with three beacons. A Realsense camera, a Raspberry PI,
and a powerbank

Table 1: Dataset statistics
Statistic #
Total images/payloads 64478
Total images used for SfM 58872
Total points to localize 57158
Total RSSI values in Train-set 36295
Total RSSI values in Validation-set 9665
Total RSSi values in Test-set 18485
Total seconds of recordings 12889
Total missing values covered with linear interpolation 2622

data respectively, as shown in Table 1. Specifically,
sessions 1-4 have been used for training, session 5 for
validation and sessions 6-7 for testing.

4 Method

We process RSSI data using a sliding window of one
second: at every second we collect the RSSIs infor-
mation of the five antennas dislocated in the environ-
ment. In several cases, RSSI values of a given antenna
were missing in the considered temporal window. We
filled these missing values using linear interpolation.
To mitigate noise and signal instability, we normal-
ized data to have 0 mean and standard deviation equal
to 1 using the formula:

xi=
xi −µi

σi
(1)

where xi is the i-th feature (i.e., the value of the i-th
antenna), µi and σi are the mean and standard devi-
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Figure 5: Schema of the proposed model

ation values of the features computed on the training
set, and xi is the i-th normalized feature.

We hence propose a neural network architecture to
exploit the temporal nature of the data and the differ-
ent contribution of each antenna, which is illustrated
in Figure 5. Specifically, we design an architecture
composed by 5 LSTMs, one for each antenna, to pro-
cess in parallel features related to the different anten-
nas. At each training step, every LSTM takes as input
a sequence containing the RSSI signals of the last 20
seconds measured with respect to each correspond-
ing antenna. The 128-dimensional hidden vectors of
the different LSTMs are then concatenated in a sin-
gle vector and fed to a Multi Layer Perceptron (MLP)
made of 4 fully connected layers to regress the final
2D pose.

To train the model, we used the smoothed L1 loss
function (Girshick, 2015), which is closely related to
Huber-Loss. We choose this loss because it is less
sensitive to outliers compared to Mean Squared Error
in a regression task. We used a learning rate of 10−4,
which is halved every 100 epochs. We used the Adam
optimizer (Kingma and Ba, 2014) to train the model
because it can handle sparse gradients on noisy prob-
lem. All experiments have been performed using the
PyTorch5 framework.

5 Experiments

We compare our method against different baselines
based on KNN, MLP and general RNN approaches
which are summarized in the following.

• KNN: location is determined form the input vec-
tor of 5 RSSI values by looking at a database of
offline observations paired with ground truth loca-
tions. We found that K = 10 gave the best results,

5https://pytorch.org/
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Figure 6: REC curve of the proposed method computed based on the Euclidean distance.

Table 2: Comparison of our method against baselines

Method FC Temporal Window Mean error
KNN - / 1.99 m
MLP 3 3s 1.80±1.25 m
RNN 2 20s 1.32±0.91 m
GRU 1 15s 1.35±0.94 m
GRU 2 15s 1.31±0.93 m
GRU 3 15s 1.28±0.95 m

LSTM 1 20s 1.64±1.07 m
LSTM 2 20s 1.29±0.88 m
LSTM 3 20s 1.25±0.90 m
BiGRU 3 20s 1.84±1.02 m

BiLSTM 3 20s 1.60±0.98 m
OURs 1 20s 2.18±1.45 m
OURs 2 20s 1.44±0.99 m
OURs 3 20s 1.22±0.93 m
OURs 4 20s 1.17±0.90 m

Table 3: Average error of the proposed method for varying
training set size

Portion of training set Error
25% 2.01±1.33 m
50% 1.46±1.03 m
75% 1.30±0.92 m
100% 1.17±0.90 m

hence we use this value in our experiments;

• MLP: RSSI values sampled in the last 3 seconds
are concatenated in a 15-dimensional vector. Lo-
cation is directly regressed from the input vector
using a Multi-Layer Perceptron with three hidden
layer of dimensionality 32, 64, 128;

• RNN: Due to the sequential nature of the input
data, we investigate the use of Recurrent Neural
Networks (RNN) (Rumelhart et al., 1985; Jordan,
1997). In this case, the input is a sequence of 20
vectors of 5 RSSI values, sampled in the 20 sec-
onds preceding the observation. The hidden size

of the RNN cell is 128. The output of the RNN is
hence passed through 2 fully connected layers of
dimensionality 64;

• GRU: We also assess the performance of a Gated
Recurrent Unit (GRU) as a recurrent neural net-
work. In this case, we use a hidden size of 128
consider a sequence of 15 5-dimensional vectors
and experiment with 1, 2 and 3 fully connected
layers with hidden size of sizes ranging from 32
to 128;

• LSTM: Similar to the GRU experiment, but
Long-Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) cells are used instead.
An input sequence of 20 seconds is consider and
similar hidden size dimensions apply;

• BiGRU, BiLSTM Same as before, but with bidi-
rectional recurrent units used instead;

Table 2 reports the results of our experiments. For
each method we report the mean error with the related
standard deviation in meters.

The simple KNN baseline reaches an average er-
ror of 1.99 meters. This large error is probably due
to the inability of the algorithm to model the temporal
nature of observations. The MLP baseline achieves a
slightly better result than KNN, with an average error
of 1.80 meters. Note that while the MLP can model
more complex input-output relationships than KNN,
it can not truly leverage the temporality of observa-
tions. The models based on recurrent neural networks
obtain better results compared to KNN and MLP. We
believe that such increase in performance depends di-
rectly from the ability to model the sequential na-
ture of the observations. A general trend (which can
be seen in results Table 2) is that models with in-



creased capacity (more FC layers) tend to perform
better (e.g., the GRU with 3 FC layers obtains an aver-
age error of 1.28±0.95 meters vs the GRU with 1 FC
layer which obtains an average error of 1.35± 0.94
meters). LSTMs, being more flexible, perform bet-
ter than GRUs and vanilla RNNs. Indeed, the best
results are obtained using a LSTM with a temporal
window of 20 seconds as input, reaching an error of
1.25± 0.90 meters. Using bidirectional LSTMs and
GRUs does not bring significant improvements to per-
formance. Our method was developed starting from
this result, with a set of five LSTM to exploit the con-
tributions of each antenna. The best overall result
is achieved by our method with an average error of
1.17±0.90 meters obtained with four fully connected
layers, and 20 seconds temporal window as input. As
shown in the REC curve reported in Figure 6, the pro-
posed method achieves an error under 1m of 54.55%
of times, and under 1.5m in 73.9% of the cases.

The importance of having a large quantity of data,
which is one of the contributions of our pipeline, is
highlighted in Table 3, which shows performance of
the best model when different portions of our dataset
are used for training. As can be observed, using 100%
of the data is fundamental to achieve a more accurate
localization.

6 Conclusion

In this work we have considered the problem of in-
door localization of BLE beacons using RSSI-Data.
We propose to overcome the expensive procedure of
manual fingerprinting to collect data using an au-
tonomous robot and structure from motion to create a
3D model of the environment for gathering the 2DoF
poses. Following this procedure, we collected over
64000 images from almost 4 hours of video. To test
the goodness of the data, we performed several ex-
periments using various machine learning approaches
and we presented a method which exploits both the
temporal nature of the data as the quantitative nature
of the features. We believe that the pipeline described
and the released dataset can help the research in this
topic.
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