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Abstract
Robot visual navigation is a relevant research topic. Current deep navigation models conveniently learn the navigation policies
in simulation, given the large amount of experience they need to collect. Unfortunately, the resulting models show a limited
generalization ability when deployed in the real world. In this work we explore solutions to facilitate the development of
visual navigation policies trained in simulation that can be successfully transferred in the real world. We first propose an
efficient evaluation tool to reproduce realistic navigation episodes in simulation. We then investigate a variety of deep fusion
architectures to combine a set of mid-level representations, with the aim of finding the best merge strategy that maximize the
real world performances. Our experiments, performed both in simulation and on a robotic platform, show the effectiveness
of the considered mid-level representations-based models and confirm the reliability of the evaluation tool. The 3D models
of the environment and the code of the validation tool are publicly available at the following link: https://iplab.dmi.unict.it/
EmbodiedVN/.

Keywords Visual navigation · Real-world navigation · Reinforcement learning · Visual representations fusion

B Marco Rosano
marco.rosano@unict.it

Antonino Furnari
antonino.furnari@unict.it

Luigi Gulino
luigi.gulino@orangedev.it

Corrado Santoro
santoro@dmi.unict.it

Giovanni Maria Farinella
giovanni.farinella@unict.it

1 FPV@IPLAB - Department of Mathematics and Computer
Science, University of Catania, Catania, Italy

2 Robotics Laboratory, - Department of Mathematics and
Computer Science, University of Catania, Catania, Italy

3 OrangeDev s.r.l., Firenze, Italy

4 Cognitive Robotics and Social Sensing Laboratory,
ICAR-CNR, Palermo, Italy

5 Next Vision s.r.l., Catania, Italy

1 Introduction

Creating a robot able to navigate autonomously inside an
indoor environment relying just on egocentric visual obser-
vations is a challenging yet attractive research goal. In recent
advanced robotics applications, the visual data collected
by the autonomous agent is generally processed by Deep
Learning (DL)models to extract the properties of the environ-
ment in a more explicit form (e.g. by detecting the presence
of objects, the presence of free space, the room type, the
scene depth, etc.) (Liu et al., 2020; Hao et al., 2020; Zamir
et al., 2018), which can be eventually leveraged to perform
operations in real-world scenarios (Bonin-Font et al., 2008;
Delmerico et al., 2019). Visual navigation approaches have
been successfully applied when the goal to be reached is
specified as coordinates (Savva et al., 2019), images (Zhu
et al., 2017), object categories (Chaplot et al., 2020),
room type (Narasimhan et al., 2020) and language instruc-
tions (Chen & Mooney, 2011), showing that DL models
are suitable tools to obtain robust navigation policies, given
their ability to learn directly from data. In particular, Deep
Reinforcement Learning (DRL) showed that robotic agents
can learn effective navigation policies from experience, by
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performing navigation episodes inside realistic simulators
following a trial-and-error setup (Zhu et al., 2017; Savva
et al., 2019), and avoiding the need for densely annotated
data, typical of classic supervised learning. Unfortunately,
despite the improved photo-realism of the simulated envi-
ronments, navigationmodels trained in simulation struggle to
effectively transfer to real spaces (Chen et al., 2020; Rosano
et al., 2020b), due to different factors such as the visual
discrepancy between virtual and real observations (domain
shift) and the difference in robot dynamics between simu-
lated and real world (i.e. real sensor measurements and robot
movements are noisy and subject to failures). To address
these limitations, several domain adaptation techniques have
been proposed (Wang & Deng, 2018) in order to reduce the
gap between the two domains, usually by applying pixel
or feature level transformations to the input images. In the
case of pixel-level transformations, the goal is to translate
images from the source domain to the target domain in order
to make them visually indistinguishable (Zhu et al., 2017;
Bousmalis et al., 2017); in the case of feature-level transfor-
mations, the visual encoder, usually a Convolutional Neural
Network (CNN), is trained to map the representation vectors
of images belonging to the two domains in the same compact
subspace (Tzeng et al., 2017; Kouw et al., 2016).

Other approaches (Zamir et al., 2018) aim at extract-
ing explicit, domain-invariant scene information from RGB
observations, such as surface normals, keypoints and depth
maps. These so-called mid-level representations of the scene
can model the visual structure of the space and have been
proved useful to improve the performances of visual nav-
igation models (Sax et al., 2019), and reduce the domain
gap (Chen et al., 2020) between virtual and real world
observations. Despite all the collected evidences about their
effectiveness, a systematic investigation on the impact of
using multiple mid-level representations, with the aim of
maximizing the transferability of PointGoal visual naviga-
tion models in the real world, has not been carried out yet.
Intuitively, depending on what the agent observes during a
navigation episode, some perception abilities could be more
useful than others to successfully accomplish the navigation
task (e.g. a depth map can be very useful in the presence of
numerous obstacles in the scene, surface normals can help
to detect a hidden step on the floor, etc.). As we show in our
experiments, providing the navigation models with a rich
visual input and giving them the ability to adaptively weight
the contribution of each mid-level representation depending
on the agent’s perception, can lead to superior performances.

Furthermore, as already highlighted in several related
works (Wijmans et al., 2020; Gupta et al., 2017), the physi-
cal evaluation of visual navigation models in the real world
remains difficult to carry out, mainly due to time and
resources constraints (e.g., in terms of the human supervi-
sion required to perform the experiments) and the fragile

nature of the robotic platforms. Indeed, hardware compo-
nents, such as motors and batteries, are subject to wear and
failures, whereas collisions with obstacles and bumpy rides
can easily harm the integrity of the robotic platform. These
limitations are a real obstacle preventing to carry out exten-
sive evaluations in real scenarios.

In this work, we investigate both problems: (1) how
to efficiently evaluate the performances of visual naviga-
tion models on realistic navigation episodes based on real
observations, avoiding the physical deployment to a robotic
platform; (2) how to train visual navigation models entirely
in simulation, that can be successfully deployed in the real
world. To this end, we proposed an evaluation tool, built on
top of the Habitat simulator (Savva et al., 2019), to efficiently
assess the performance of navigationmodels in a realistic set-
ting, while avoiding the time-consuming evaluation on a real
robot. The tool leverages two 3D models of the same envi-
ronment: a geometrically accurate 3D model to generate the
virtual navigation episodes in simulation, and a sparse 3D
model consisting of a set of real-world images attached with
their camera poses, used to provide the generated navigation
episodes with real observations.

The evaluation tool has been then employed to investigate
whether mid-level representations can improve the transfer
of a policy learned in simulation to the real world. To this
aim, we exploited the DL models proposed in the work of
Zamir et al. (2018) to extract mid-level representations from
RGB observations and we considered a variety of deep learn-
ing architectures for visual navigation which perform early,
mid and late fusion of the extracted representations. More in
details, four mid-level representations, namely surface nor-
mals, keypoints3D, curvature, depth, have been considered as
the most prominent to perform PointGoal navigation, given
their ability to capture the most important geometric proper-
ties of the environments. Figure1 contains examples of the
examined mid-level representations (“Mid-level representa-
tions extraction” step).

All the proposed fusion navigation models have
been trained using the Habitat simulator (Savva et al., 2019)
on the synthetic version of a real environment following a
DRL setting, and have been evaluated on realistic virtual
navigation episodes based on real-world observations using
the proposed evaluation tool. To confirm the effectiveness
of our tool we also tested the navigation models in the real
environment using a custom robotic platform, equipped with
accurate actuators. A complete overview of the proposed
framework is depicted in Fig. 1. Overall, all the proposed
navigationmodels showed a good behaviorwhen deployed in
the real world, supporting the performance estimated by our
evaluation tool, albeit reporting different navigation capabil-
ities in the various navigation episodes.

We observed that the proposed representations fusion
models are effective at reducing the real and simulated

123



Autonomous Robots

Fig. 1 Illustration of the considered pipeline to train, evaluate and
test visual navigation models. Training and evaluation are performed
leveraging a locomotion simulator on two separate 3D models of the
environment. During training (first row in light blue) a geometrically
accurate 3D model of the environment is used to learn an optimal navi-
gation policy using RL. To evaluate the navigation policy on a realistic
scenario (second row in orange), a set of real-world images of the envi-

ronment pairedwith camera poses is used to produce realistic navigation
episodes in simulation. In both cases, a set of mid-level representations
are extracted from the RGB observations, which are then adaptively
combined by the proposed mid-level representations fusion architec-
tures to perform the navigation task. The navigation models are then
tested on a real robot to perform real-world navigation episodes (third
row in green) (Color figure online)

observations gap, reaching comparable performances with
navigation models that used real-world images to perform
adaptation. Also, using multiple mid-level representations
as input resulted in better performing navigation policies,
even in the case of simple fusion architectures, with more
advanced fusion strategies reporting the best results among
all fusion models.

In summary, the contributions of this work are as follows:

1. We proposed an evaluation tool, built on top of the
Habitat simulator (Savva et al., 2019), to reproduce real-
istic navigation trajectories in simulation by leveraging
a geometrically accurate 3D model of an indoor envi-
ronment and a set of real-world images paired with the
camera poses, sampled from a Structure from Motion
(SfM) (Schönberger & Frahm, 2016) reconstruction of
the same environment. We showed the effectiveness of
the evaluation tool by performing a test session on real-
world trajectories using a robotic platform. Our tool
allows a fast and inexpensive assessment of the models
capabilities and represents a good proxy for estimating
real world performance.

2. We proposed a variety of learning-based visual naviga-
tionmodels performingmid-level representations fusion,
to learn optimal navigation policies in simulation which
can be directly deployed in the real world, without per-
forming any additional domain adaptation. Each model
receives a variable amount of mid-level representations
and follows a different combination strategy, to learn how
to adaptively balance the contribution of the representa-
tions and maximize the final performances;

3. Following an extensive evaluation both in simulation and
on a real robotic platform, we showed how the number
of used mid-level representations and the type of adopted
fusion architecture can impact the final performance of
navigation models. Overall, the navigation models bene-
fited frommultiplemid-level representations and showed
comparable performances to models trained using real-
world observations;

The remainder of the paper is organized as follows. Sec-
tion2 discusses the related works. In Sect. 3, we describe the
proposed approach. The experimental settings are discussed
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in Sect. 4, whereas the results are presented in Sect. 5. Sec-
tion6 concludes the paper and gives hints for future works.

2 Related works

Our work relates to approaches which belong to a range of
topics, including simulators for visual navigation, embod-
ied visual navigation, simulated to real domain adaptation
and visual representation. We report the most relevant con-
nections to our work with respect to the state-of-art in the
subsections below.

2.1 Embodied navigation simulators

The development of advanced simulators (Savva et al., 2017;
Wu et al., 2018; Xia et al., 2018; Makoviychuk et al.,
2021) used in conjuction with realistic large-scale 3D indoor
datasets laid the foundations for the design of learning-based
navigation models which can learn the desired behaviour
through realistic interactions with the scene. To foster the
research of robotic agents that perform increasingly com-
plex tasks, more recent works (Szot et al., 2021; Li et al.,
2021) released highly interactive environments comprised
of a large number of active elements (e.g. moving pedes-
trians, interactive furniture, etc.), within which the agent
can widely experiment a large variety of realistic interac-
tions. Embodied simulators are designed to be used with
third-party 3D datasets, which have different characteris-
tics and are designed following different approaches. The
3D spaces proposed in the works of Chang et al. (2017),
Xia et al. (2018), Dai et al. (2017) reproduce real-world
indoor rooms and have been acquired using dedicated 3D
scanners. This allows for the collection of a large num-
ber of photo-realistic 3D environments at a relatively low
cost, but the final 3D reconstruction may present holes or
artifacts due to imperfect scans. In contrast, the 3D mod-
els proposed by Straub et al. (2019), Li et al. (2021),
Kolve et al. (2017), Szot et al. (2021) represent replicas of
realistic indoor spaces, accurately designed by artists. The
survey of Möller et al. (2021) contains a detailed section
on state-of-art datasets and simulators for robot naviga-
tion.

To facilitate the assessment of navigation performance in
the real-world, Deitke et al. (2020) released a set of 3Dvirtual
environments for training purposes and allowed researchers
to physically test the obtained navigation models on the real
equivalents through a remote deployment application.

In this work, we aim to train visual navigation mod-
els in simulation that can be directly deployed in the
real world. Given the need to efficiently assess their nav-
igation capabilities, we extended the functionality of the
Habitat simulator (Savva et al., 2019) to reproduce real-

istic navigation episodes containing real-world observa-
tions. The proposed framework allows for a good esti-
mation of the real-world performances, while avoiding
the deployment of the policy to a physical robotic plat-
form.

2.2 Embodied visual navigation

The problem of robot visual navigation has been studied for
decades by the research community (Bonin-Font et al., 2008;
Thrun, 2002). In its classic formulation, the navigation pro-
cess can be thought as a composition of sub-problems: (1)
construction of the map of the environment; (2) localiza-
tion inside the map; (3) path-planning to the goal position;
(4) execution of the navigation policy. The environmental
map can be provided beforehand or reconstructed with a SfM
pipeline (Schönberger & Frahm, 2016) using a set of images
of the space. The localization is then performed by com-
paring new observations with the previously collected set of
data. Also, in SLAM-based methods (Cadena et al., 2016;
Fuentes-Pacheco et al., 2015), the reconstruction of the map
and the localization tasks are performed at the same time.
The navigation is then performed after a path to the goal is
computed. These methods have been implemented in sev-
eral scenarios but they present significant limitations, such
as the limited scalability to large environments, the accu-
mulation of the localization error and the limited robustness
to dynamic scenarios. Recently, learning-based visual nav-
igation approaches emerged as effective alternatives to the
classic navigation pipelines, promising to learn navigation
policies in a end-to-end way, receiving images as input and
returning actions as output, avoiding to explicitly model all
the intermediate steps (Zhu et al., 2017; Mirowski et al.,
2016). Depending on the type of goal, deep learning models
can perform ObjectGoal (Chaplot et al., 2020; Morad et al.,
2021) or RoomGoal (Narasimhan et al., 2020) navigation,
follow instructions expressed in natural language (Chen &
Mooney, 2011; Krantz et al., 2020; Anderson et al., 2018;
Fried et al., 2018) or act to answer questions about prop-
erties of the environment (Das et al., 2018; Gordon et al.,
2018).

When goals are specified as a coordinates (PointGoal) or
observations of the environment (ImageGoal), the task is
referred to as geometric navigation, given the requirement
of the navigation model to reason about the geometry of the
3D space in order to accomplish the task. Recent geomet-
ric navigation approaches investigated the use of a variety
of learning architectures: Zhu et al. (2017) used reactive
feed-forward networks for ImageGoal navigation; Savva et
al. (2019) included a recurrent module to embed the past
experience, enforcing the sequential nature of navigation;
Wijmans et al. (2020) improved the scalability of the model
collecting billions of frames of experience. Chen et al. (2020)

123



Autonomous Robots

introduced the use of sounds together with images to reason
about the surrounding space and to guide the agent towards
the goal. Chaplot et al. (2020) and Chen et al. (2019) used
spatial memories and planning modules, whereas Savinov et
al. (2018) and Chaplot et al. (2020) used topological memo-
ries to represent the environment.

The methods investigated in this paper fall in the class of
geometric navigation approaches, where the model needs to
reach a goal specified as coordinates. Similarly to themethod
proposed by Savva et al. (2019), we trained a set of RL-
based navigation models consisting of both convolutional
and recurrent modules. However, our approach differs for
the type of input the navigation models receive and for the
final objective.

2.3 Simulated to real domain adaptation

Domain adaptation methods applied to visual navigation
aim to learn domain-invariant representations for virtual and
real observations which present difference in style although
depicting the same content. Existing simulators for visual
navigation generally adopt strategies to limit this gap, by
following two strategies: by making the environment highly
photo-realistic or by randomizing the properties of the vir-
tual environment. In the former approach, the goal is to
make the simulation appear as similar to the real world
as possible. In the latter, the idea is to make the model
experience a highly dynamic environment to avoid over-
fitting to a specific style and to allow for a style-agnostic
representation learning of the space. Domain randomiza-
tion was successfully applied in robotic grasping (James
et al., 2019), drone control (Loquercio et al., 2020; Sadeghi
& Levine, 2016), vision-and-language navigation (Ander-
son et al., 2020). When the domain gap persists, specific
strategies should be adopted. For example, when real-world
data is available beforehand, it is possible to train the nav-
igation models on synthetic data and then fine-tune them
on real observations (Zhang et al., 2019; Rosano et al.,
2020b). Real observations can also be employed to perform
adaptation at the feature-level (Tzeng et al., 2017; Kouw
et al., 2016), pixel-level (Hu et al., 2018; Zhu et al., 2017)
or at both levels (Hoffman et al., 2018). More recently,
different works were proposed to address specifically the
transfer of visuomotor policies from the simulated to the real
world. For instance, Li et al. (2020) proposed a GAN-based
model to decouple style and content of visual observa-
tions and introduced a consistency loss term to enforce
a style-invariant image representation. Rao et al. (2020)
introduced a RL-aware consistency term to help preserv-
ing task-relevant features during image translation. Truong
et al. (2021) followed instead a bi-directional strategy, using
a CycleGAN-based (Zhu et al., 2017) real to simulated adap-
tation model for the visual observations and a simulated to

real adaptation module for the physical dynamics. Rather
than using adaptation modules to reduce the gap between
real and simulated observations, we followed the idea of Sax
et al. (2019) and Chen et al. (2020) and trained our nav-
igation policy on top of mid-level representations, which
contain crucial geometric and semantic cues of the environ-
ment and are invariant to the navigation scenario. The idea
of combining different visual representations to improve the
navigation abilities of an agent has also been explored in other
approaches (Mousavian et al., 2019; Morad et al., 2021) but
their fusion mechanisms have often been limited to a simple
stacking of the different input representations.More recently,
Shen et al. (2019) explored this opportunity by proposing a
set of DL-based fusion architectures in the context of Object-
Goal navigation, but their experiments were conducted in a
poorly realistic setup (a discretized grid-world) and did not
consider the deployment of the learned models in the real
world. In contrast, our approach aims at learning how to
leverage the correct combination of visual geometric cues
that better transfer to the real world, considering a continu-
ous state space and a goal specified as coordinates.

2.4 Evaluation of visual navigation systems

Most works on visual navigation systems for robot nav-
igation focused on the advancement of control systems,
with all experiments carried out exclusively on simulators,
leaving the domain adaptation problem for further investiga-
tions (Mirowski et al., 2016;Chen et al., 2019;Wijmans et al.,
2020). Some studies considered the gap between simulation
and real world, eventually performing qualitative tests on
real-world trajectories using custom robotic platforms (Zhu
et al., 2017; Chaplot et al., 2020). For instance, Kadian et
al. (2020) conducted a study to measure if advancements
recorded in simulation reflect advancements in the realworld.
Given that no special strategies were adopted to reduce the
visual domain gap, the authors set up a perfect replica of
the room available in simulation to perform the evaluation of
the visual-based navigation policies using a physical robot.
To minimize avoid the domain gap, Tai et al. (2017) trained
a RL-based navigation policy in simulation using a combi-
nation of Lidar signals and Depth images. The evaluation,
performed directly on a real robot, confirmed the importance
of using domain-invariant representations as input to the nav-
igation models, in order to avoid additional adaptation steps.
Conversely, in their attempt to design a domain-agnostic nav-
igation system for flying drones, Sadeghi and Levine (2016)
showed that deploying a navigation policy trained in simula-
tion on a real drone is challenging and that the performance
obtained from the evaluation onmore photorealistic environ-
ments does not directly reflect real-world performance. In a
similar way, classic navigation approaches rely on simula-
tors for their development and evaluation, even if they do
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not require a training procedure (Takaya et al., 2016; Wang
et al., 2017; Collins et al., 2021). These simulators are usu-
ally able to reproduce the physical dynamics of the real world
though lacking in photorealism (Koenig & Howard, 2004;
Carpin et al., 2007). In contrast with the aforementioned
methods, our evaluation tool aims to ease the assessment
of the performance of visual-based navigation policies on
realistic observations directly in simulation, streamlining the
procedure required to deploy the navigation system on a real
robot.

3 Method

In this section we first provide details about the framework
used to train and evaluate our navigation policies, including
information on the 3D models reconstruction and alignment
pipeline and on the generation of the realistic navigation
episodes.We then proceed by describing the navigation prob-
lem setup in presence of multiple mid-level representations
and the type of visual representations fusion strategies that
have been adopted.

3.1 3Dmodels reconstruction and alignment

Our training and evaluation tool requires the acquisition of
two 3D models of the same environment: a geometrically
accurate 3D model that can be acquired using a 3D scan-
ner, such as Matterport 3D,1 and a photo-realistic 3D model
reconstructed from a set of real-world observations, using
a SfM algorithm (Schönberger & Frahm, 2016). The first
model is an accurate replica of the real environment but
with limited photorealism. The scanning process returns a
3D mesh that can be natively imported inside Habitat (Savva
et al., 2019) and used to train the navigation policy. On the
contrary, the second model is a sparse photo-realistic but
geometrically inaccurate reconstruction of the environment.
The SfM process returns a 3D pointcloud in which all images
are labeled with their camera pose (position and orientation).
Figure2 compares the two 3D models. It is worth noting that
this model can not be directly used in the Habitat simulator
and a dedicated interface was developed as part of our tool
to allow its use inside the simulation platform, as described
in Sect. 3.2. Because the two 3D models are acquired sepa-
rately using two different approaches, they might present a
scale and a rotation offset, that should be minimized by fol-
lowing a maps alignment procedure. One possible solution is
to manually search the parameters of the affine transforma-
tion, that is then applied to one or both 3D models to match
the coordinates of the other 3D model. To make this process

1 https://matterport.com/cameras/pro2-3D-camera.

Fig. 2 On the left, a view of the geometrically accurate 3Dmodel of the
considered office environment. It allows the sampling of images from
any position but it is limited in terms of photo-realism. On the right, a
view of the 3D models of the same indoor environment, reconstructed
following a Structure fromMotion (SfM) (Schönberger&Frahm, 2016)
pipeline. It contains a sparser collection of real-world images paired
with their camera poses (each red marker represents the position of an
image in the 3D model)

automatic, we leveraged an image-based alignment proce-
dure2 to transform the coordinate system of the 3D model
containing real-world observations to match the one of a set
of observations sampled from the geometrically accurate 3D
model. To this end, we used the Habitat simulator to collect
images from random locations together with their camera
pose. Although the images belong to two different 3Dmodels
and their appearance does not match perfectly, the aligning
procedure turned out to be robust against visual differences
and succeeded with the coordinate system transformation.

3.2 Generation of realistic navigation episodes in
simulation

Once the 3D models are aligned, they can be exploited to
generate realistic navigation episodes in simulation. At first,
the navigation trajectory is generated by the simulator on
top of the geometrically accurate 3D model. Then, the vir-
tual agent performs the navigation task and at each step the
perceived virtual observation is systematically replaced with
the real-world image which is closest in space to the current
agent position. In more detail, at each step, the current pose
of the agent is extracted from the simulator and it is used to
retrieve the nearest real image from the 3D model contain-
ing real-world observations. The retrieved real observation
is then processed by the visual navigation module in order
to predict the action to take in the virtual environment. This
process is repeated until the end of the navigation episode.
Considering that the agentmoves on the floor surface and that
its camera does not change its height nor its pitch and roll
angles, the 6DoF camera poses were transformed to 3DoF
coordinates, with the first two degrees of freedom represent-
ing theX andZ cartesian coordinates on the ground plane and

2 We used the model_aligner function of the COLMAP soft-
ware https://colmap.github.io/faq.html.
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Fig. 3 Popular Deep Learning models used to perform visual repre-
sentations fusion. a) In Early-fusion models, the representations are
combined at an early stage and are then provided as input to the deep
model. b) In the case of Mid-fusion models, each representation is pro-
cessed by a separate encoder, that outputs an intermediate embedding
vector (dashed line rectangles). Therefore, all vectors are combined by

a fusion module to produce the model’s final output. c) Differently from
the previous two, the Late-fusion model is an ensemble of indipendent
models, each one processing a single representation and producing a
distinct output (e.g. the action to perform). A fusion module then col-
lects the outputs of the models to return the final decision. In the figure,
the final models’ output are denoted by blue circles

the third degree of freedom representing the camera orienta-
tion as the angle along the Y axis, perpendicular to the XZ
plane. We transformed the cameras heading angle θ to unit
vectors (u, v), where u = cosθ and v = sinθ , and calcu-
lated the angle difference as the cosine similarity between the
corresponding vectors. In our experiments we found that a
similarity threshold of 0.96 ensures good results. After filter-
ing the real-world images by angle,we apply a secondfilter to
the resulting subset of images based on the X-Z coordinates.
Finally, the nearest image is chosen to replace the virtual
observation. Because the image retrieval time is crucial to
perform a fast policy evaluation, we leveraged the efficiency
of the FAISS library (Johnson et al., 2017) to perform a fast
search on a large set of thousands of records in a fraction of
a second. As a result, the navigation episode is performed
in simulation but the policy is obtained by processing real-
world observations.

3.3 Navigation problem setup

We consider the PointGoal visual navigation task in indoor
environments. In this context, an agent equipped with an
RGB camera is placed at a random location of the environ-
ment and is required to navigate towards a goal location,
indicated through a set of coordinates, relying solely on the
visual observations to reason about the surrounding space
and execute the best possible actions. No explicit infor-
mation about the layout of the environment is provided to
the agent. At each timestep t , the agent receives a RGB
observation ot that is processed by a set of transformation
models f1, f2, . . . , fn (we use themodels provided by Zamir
et al. (2018)) to output a list of mid-level representations
m1

t ,m
2
t , . . . ,m

n
t . From Fig. 1 it is possible to observe exam-

ples ofmid-level representations obtained from the respective
RGB images and the different scenes properties they are
able to capture. These representations are then passed to a
fusion module which learns how to combine them in order to
produce a final compact vector containing the most mean-
ingful information about the agent’s current observation.

Our navigation policy is parametrized by a neural network
π(at | m1

t , . . . ,m
n
t , g) which, given the visual representa-

tions m j
i and information about the goal to reach g, predicts

the action at to perform at time t . This process is repeated
until the goal or a given steps budget is reached.

The navigation models were trained entirely in simula-
tion following a RL setup. In RL, the agent performs actions
inside the virtual environment and collects rewards or penal-
ties (negative rewards), depending in whether the actions led
to reduce the distance to the goal or not. The objective of the
training process is to find an optimal navigation policy π∗
which allows the agent to find the shortest path to the goal
by maximizing the sum of the collected rewards.

3.4 Mid-level representations fusion

In this work, we leverage the mid-level representations pro-
posed by Zamir et al. (2018), able to capture a variety of
different geometric and semantic properties of the observed
environment. To investigate the benefits that a visual rep-
resentations fusion strategy can offer to models performing
PointGoal navigation,weproposed a variety of deep convolu-
tional networks to performearly,mid and late fusion. Figure3
shows an overview of the investigated fusion schemes. More
specifically, we considered five different visual encoders:

• A classic convolutional model performing early-fusion
of the mid-level representations. It represents the most
simple combination strategy and can be considered as a
baseline for more elaborated fusion models (Fig. 3a);

• Two convolutional models with a channel-level attention
mechanism. This architecture represent a variant of the
Early-fusion model depicted in Fig. 3a, which performs
a weighting of the feature maps after every convolutional
layer, similarly to what is done with the Squeeze-and-
excitation networks (Hu et al., 2018). Assuming that
different feature maps contain different properties of the
input observation, this architecture can learn to focus on
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themost relevant ones. The twomodels differ for the type
of layer pooling used in the attention branches; Sect. 4.2;

• AMid-fusionmodel (Fig. 3b) which processes each mid-
level representation in a dedicated convolutional branch,
to then aggregate their outputs in the final shared layers.
This architecture can specialize portions of the network
to exploit the visual cues contained in specific mid-level
representations;

• A Late-fusion model (Fig. 3c) which represents an
ensemble of networks, each of them trained separately
on a single mid-level representation. Each network out-
puts the probability of taking an action and a final policy
fusion module aggregates them to select the final action,
based on a context summary representation.

Each visual encoder is responsible of processing the visual
mid-level representations and is followed by a controller,
which receives the output of the visual encoder and further
useful data to output the navigation policy. More detailed
information about the architectures of the proposed fusion
models is reported in Sect. 4.2 and in Fig. 4.

4 Experimental settings

4.1 Dataset acquisition

We carried out our experiments in an office environment
of about 150 square meters. The geometrically accurate
3D model was acquired using a Matterport 3D scanner
and the resulting 3D mesh was imported inside the Habi-
tat simulator to perform the training of the navigation
policies. Instead, the 3D model containing real-world obser-
vations was reconstructed for testing purposes using the
COLMAP (Schönberger & Frahm, 2016) software, starting
from a set of 32k RGB images of the environment, collected
using a robotic platform equipped with a Realsense d435i
camera.3 This resulted in a sparse 3D pointcloud where each
image is labeledwith its camera pose relative to the 3D recon-
struction. To capture the real-world images, the robotic agent
followed a simple exploration policy aimed at covering all
the traversable space asmore uniformly as possible, proceed-
ing along straight trajectories, stopping and turning around
by a random angle to avoid collisions and continue the acqui-
sition. This procedure was carried out automatically by the
robot, thanks its on-board infrared (IR) sensors that can per-
form short-range obstacle detection. The real-world image
set was acquired in about 3.5h at 3fps, with a robot’s maxi-
mum speed of 0.25m/s.As alreadymentioned in Sect. 3.1, the
3D model containing real-world observations was aligned to
match the coordinate system of the geometrically accurate

3 https://www.intelrealsense.com/depth-camera-d435i/.

3D model. For this purpose, an “alignment set” of 6k images
was randomly sampled from the virtual environment together
with the relative camera poses. These images were registered
inside the 3D model using COLMAP and then used by the
image-based alignment function to perform the final match
of the coordinate system.

4.2 Proposed navigationmodels

In our experiments we leveraged four mid-level models from
Zamir et al. (2018) to extract surface normals, 3D keypoints,
curvature, depth map. We considered these representations
because they are able to capture different geometric prop-
erties of the environment, which is ideal given that in our
navigation setup the goal is specified as coordinates in the
space and that the task requires geometric reasoning. Each
of thesemodels receives a 256×256 RGB image and outputs
a compact tensor of size 8×16×16.We found that this com-
pact representation provides the navigation model with the
information required to successfully perform the downstream
task. Moreover, it allows the design of compact navigation
models which results in faster training and easier deploy
in real robotic platforms, whose computational resources
are usually limited. Specifically, we proposed five naviga-
tion models implementing five distinct visual encoders, also
depicted in Fig. 4:

• The “Simple” model consists of two convolutional layers
with 3 × 3 kernels with 64 and 128 intermediate fea-
ture maps respectively. After each convolutional layer,
we introduced a GroupNorm normalization layer to take
into account the highly correlated data in the batch and a
ReLU activation function. The aggregation module col-
lects all the considered mid-level representations and
stacks them along their features dimension to produce
a unified representation of the agent’s observation. This
representation is then provided as input to the model.
Figure4a illustrates the architecture of the model;

• The “Squeeze-and-Excitation” (SE) model introduces a
feature-level attention module after each convolutional
layer, including the input layer, toweigh the different fea-
turemaps depending on their content. FollowingHu et al.
(2018), each attention module consists of a global pool-
ing layer, two fully connected (FC) layers separated by a
ReLU activation function and a final sigmoid activation
function which returns the weights to perform the feature
map-level attention. We tested two variants of the same
model, onewith global average pooling and the otherwith
global max pooling in the attention module. We refer to
these variants as “SE attention (avg pool) model” and
“SE attention (max pool) model” respectively. Figure4b
depicts the aforementioned model;
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Fig. 4 Overview of the proposed visual navigation models, which fol-
low distinct mid-level representations fusion strategies. All the models
are comprised of two parts: (1) a visual encoder and (2) a controller. The
visual encoder (red background) is responsible for effectively combin-
ing the different mid-level representations provided as input to produce
a meaningful vector embedding of the scene. The controller (light blue
background) takes this embedding as input, together with additional
information about the coordinates of the navigation goal and the previ-

ously performed action, to output the action to take and the estimated
“quality” of the current state to reach the destination. The LSTM lay-
ers allow the model to embed the history of the navigation episode at
each timestep, given the sequential nature of the task. Each model was
decomposed in modules, which are detailed on the top right of the fig-
ure. See the text for the discussion of the different models (Color figure
online)
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• The “Mid-fusion” model consists of a number of parallel
visual encoders equal to the number of input repre-
sentations. In this architecture, each encoder has the
chance to focus on a single mid-level representation and
the final output of the model is given by the combina-
tion of the intermediate outputs of the various visual
branches. In practice, each branch is represented by
the same visual encoder of the “Simple model”, which
produces a compressed visual representation as output.
These “intermediate” representations comingout fromall
the branches are subsequently concatenated along their
channel dimension to form the final visual representation.
We also explored more advanced combination strategies
but in our experiments the simple concatenation returned
the best results. Figure4c presents a scheme of themodel;

• The “Late-fusion” model differs from the previous mod-
els because it consists of a set of full navigation models
(visual encoder + controller) pre-trained independently
on single distinct mid-level representations. At each nav-
igation step, themodels output action candidates and they
are combined together depending on the current agent’s
perception to output the final action. More specifically,
each navigation model outputs a probability distribution
over a discrete set of actions that the agent can perform
and an additional policy fusion module is responsible
to adaptively weigh the single model’s outputs to obtain
the final action probability. The policy fusion module
follows the same architecture of the visual encoder of
the “Simple Model”, which takes a stack of the con-
sidered mid-level representations as input and outputs
the weights (a probability distribution over the number
of models) to balance the contribution of every naviga-
tion model to the final output. To train the policy fusion
module, all the navigation models were trained before-
hand and then frozen. Figure4d summarizes the entire
architecture. Given nm the number of considered mod-
els, na the number of actions in the discrete action set,
A ∈ R

nm×na the matrix containing the models’ actions
candidate vectors and wp f m ∈ R

nm×1 the output of the
policy fusion module, the final action probability distri-
bution y ∈ R

na×1 is equal to:

y = ATwp f m

The controller consists of two LSTM layers (Hochreiter &
Schmidhuber, 1997) which take as input the visual represen-
tation coming from the visual encoder, the action produced
by the navigation model at the previous timestep and the
information about the goal coordinates relative to the robot’s
current position, and outputs an action probability distribu-
tion together with a value representing the “quality” of the
current agent’s location given the goal to be reached (i.e. it
is an Actor-Critic RL model (Konda & Tsitsiklis, 2000)).

The vectors informing about the previous action and the goal
coordinates are both projected to two separate vectors of size
32 and then concatenated to the output of the visual encoder,
which is a 512-d vector, to produce the final 576-dimensional
vector that is fed to the controller. The use of recurrent lay-
ers helps the model to deal with the sequential nature of the
navigation task.

4.3 Training details and evaluation

All the proposed navigation models have been trained on
the synthetic version of the considered office environment,
following the setup of Wijmans et al. (2020). We used the
Habitat simulator (Savva et al., 2019) to sample a set of 100k
virtual navigation episodes beforehand, which we used to
train our navigation models for 5 million frames each. This
threshold was set experimentally as it allowed the agents to
collect the required experience and to converge to optimal
training metrics.

The navigation models have been trained with one, two,
three and four mid-level representations as input, all from
scratch.

In order to speed-up the training procedure we lever-
aged the DD-PPO architecture proposed by Wijmans et al.
(2020), a distributed variant of the popular PPO reinforce-
ment learning algorithm (Schulman et al., 2017), which
allows multiple agents to be trained in parallel on one or
multiple GPUs. Additionally, we adopted an input caching
system that resulted in a doubled training speed (from 80fps
to 160fps for a model receiving two representations as input,
trained with 4 parallel processes per gpu on two Nvidia Titan
X).

At each timestep the agent chooses one of the four possible
actions available: move straight by 0.25m, turn left by 10◦,
turn right by 10◦, STOP. The navigation episode ends when
the STOP action is performed or when the maximum number
of execution steps is reached. We fixed this threshold to 200
steps based on the size of the environment.

Our visual navigation models have been evaluated using
two standard metrics to measure the performance of agents
navigating indoor spaces: Success Rate (SR) and Success
weighted by (normalized inverse) Path Length (SPL). The
SR measures the effectiveness of the navigation policy at
reaching thegoal. It is defined as the ratio between thenumber
of successful navigation episodes and the total number of
performed episodes:

1

N

N∑

i=1

Si (1)

where N is the total number of performed episodes and Si
is a boolean value indicating whether the i-th episode was
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successful. The SPL takes into account the path followed by
the agent and can be thought as a measure of efficiency of
the navigation model with respect to an agent following the
shortest geodesic path to the goal. The SPL is defined as:

1

N

N∑

i=1

Si
li

max(li , pi )
(2)

where N is the total number of performed episodes, Si is a
boolean value indicating the success of the i-th episode, li is
the shortest geodesic path length from the starting position
to the goal position of the i-th episode and pi is the agent’s
path length in the i-th episode. In case of a perfectly executed
navigation episode, the SPL assumes the value of 1. On the
contrary, if the navigation policy fails, it assumes the value of
0. The navigation models have been evaluated in simulation
on 1000 episodes defined by a starting and a goal positions.
Episodes have been sampled beforehand taking into account
their complexity. Indeed, to avoid excessively simple nav-
igation episodes, they have been filtered to ensure that the
ratio between the geodesic distance and the euclidean dis-
tance from the starting position to the goal is greater than
1.1, as already suggested in the work of Savva et al. (2019).
An episode is considered successful if the agent calls the
STOP action within 0.20m from the goal, and unsuccessful
if it is called beyond that distance or if the the maximum
number of steps (200) is reached. For the evaluation we used
the same steps budget per episode used during train.

4.4 Baseline navigationmodels

We compared the proposed models with three baselines,
which share the same architecture but receive different types
of RGB images as input. They consist of: (1) a SE (Hu et al.,
2018)-ResNeXt50 (Xie et al., 2016), a larger visual encoder
compared to the ones used to process the mid-level repre-
sentations, suitable to process the lower level information
contained in the input images; (2) a controller, identical to the
one used in the proposed mid-level models. We considered
the DL model pretrained on the Gibson (Xia et al., 2018)
and Matterport3d (Chang et al., 2017) datasets for 2.5 bil-
lion steps, released by Wijmans et al. (2020), that was then
adapted to our office environment. Specifically, the baselines
models are as follows:

• The “RGB Synthetic” model was trained on the synthetic
observations coming from the proposed virtual environ-
ment, for 5 million steps. It is considered to assess to
what extend a navigation model trained purely in the vir-
tual domain can be transferred directly to the real world,
without further adaptation or supervision;

• The “RGB Synthetic + Real” model was trained for 2.5
million steps on the synthetic observations and then fine-
tuned for other 2.5 million steps on real-world images.
The real observations used to fine-tune the navigation
model belong to a different SfM reconstruction, which
consists of 25K new acquired images of the same indoor
space. As for the 3D model used for evaluation, it was
first aligned to the geometrically accurate 3D model and
then used for training purpose. This navigation is chosen
to investigate whether using observations of the target
domain during training can improve the navigation per-
formance, despite knowing that collecting and exploiting
them could be often expensive or unfeasible. We expect
this model to reach a near-optimal navigation perfor-
mance;

• The “RGB Synthetic + CycleGAN” (Zhu et al., 2017)
model was trained for 2.5 million steps on the synthetic
observations and then fine-tuned for other 2.5 million
steps on “fake” real observations, obtained by trans-
forming the synthetic images to look like the real ones
using CycleGAN (Zhu et al., 2017), a pixel-level unsu-
pervised domain adaptation model trained on two sets
of unpaired synthetic and real-world images (5K for
each domain), randomly sampled from the virtual and
3D model containing real-world observations used for
training, respectively. This navigation model is chosen
to investigate the benefit of employing an unsupervised
domain adaptation model during training to reduce the
visual domain gap between virtual and real observations,
which does not require the reconstruction of a 3D model
containing real-world observations as compared to the
“RGB Synthetic + Real” model, although it still relies on
observations from both domains.

Pre-training the “RGB Synthetic + Real” and the “RGB Syn-
thetic + CycleGAN” models on virtual observations resulted
in higher performance compared to the same navigation
models trained directly on real-world images or transformed
images only, as already highlighted in the work of Rosano et
al. (2020b).

4.5 Real-world evaluation

To validate the navigation results reported by the proposed
realistic evaluation framework based on real observations
and,more generally, to assess the ability of the proposed navi-
gationmodels to operate in a real context without performing
any additional domain adaptation between simulation and
real world, we have carried out experiments in the office
environment using a real robotic platform. We leveraged
a robot equipped with accurate sensors and actuators, able
to perform precise movements. That is a desired feature to
have because imprecise actions could lead to sensible drops
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in performance (Rosano et al., 2020a; Kadian et al., 2020).
Although this is an important issue to address, in thisworkwe
focus more on the visual understanding abilities of the nav-
igation models to support the navigation process, thus we
defer a further investigation on the impact of noisy sensors
and actuation to future works. We equipped the robot with
a Realsense d435i camera which we mounted to match the
point of view of the virtual agent. We set up a client–server
communication system to move the computation from the
limited hardware of the robot to a more powerful machine.
At each navigation step, the robot takes a RGB image from
the real environment and sends it to the server. In the server,
the image is processed by the navigationmodelwhich returns
the action to be executed, that is sent back and executed by
the robot. Thewheel encoders of the robot provide the system
a feedback about the course of motion.

In total, in this experimental setting, we considered six
testing navigation trajectories with an increasing level of
difficulty to assess the capabilities of the different mod-
els to understand the surrounding environment and take the
appropriate actions accordingly. Most episodes require the
navigationmodels to reason about the obstacles that are inter-
posed between the current position of the agent and the goal,
and to find the best path given the agent’s understanding of
the layout of the space, inferred from the current and pre-
vious observations collected during the navigation episode.
For instance, all goals are out of the line of sight of the agent
in the starting pose and, in most of the episodes, the goal is
not visible for most of the navigation time; in some episodes
the obstacle appears suddenly (i.e. in episode 4 the agent
turns around towards the goal and faces the pillar at a very
short distance); in other episodes (episodes 5 and 6) a mov-
able obstacle was placed at test time only in order to test
the ability of the navigation models to cope with obstacles
never seen during training and deal with new space layouts.
All navigation models have been tested on all the real-world
trajectories and, to verify the repeatability and the reliability
of the learned navigation policies, each navigation episode
has been repeated three times. Testing one model on one
episode took about 5min on average, for a total of 1710min
or 28.5h required to complete the entire testing procedure. It
should be noted that, in general, evaluating a large number
of navigation models in real settings is time-consuming and
requires a constant human supervision. Moreover, a lot of
influencing factors should be taken into account to minimize
the time spent to carry out the task. For instance, aspects such
as how slippery or uneven the floor is, the grip properties of
the robot’s wheels, the failure rate of the robot’s actuators
and the robot’s battery life heavily influence the amount of
time needed to perform an extensive performance evaluation
task and, in some cases, can totally compromise its execu-
tion. Given the high costs involved with the assessment of
the performance on a real robot, it is immediately evident the

value offered by the proposed evaluation tool, which drasti-
cally reduces the testing time to a few seconds per episode
by considering real observations.

5 Results

In this section we report the results achieved by the proposed
navigation models when evaluated on realistic trajectories in
simulation andwhen tested in the real world using the robotic
platform.We then highlight how the proposed evaluation tool
can effectively providevaluable performance estimations and
show how the proposed navigation models are able to gener-
alize to the real world.

5.1 Evaluation on realistic trajectories

Table 1 reports the performance in terms of SPL and SR of
all the proposed visual navigation models tested on realistic
navigation episodes comprising real-world observations. The
notationA+B denotes the types and the number of mid-level
representations provided as input to the navigation models.
As previously highlighted, to increase the number of input
visual representations, we followed a greedy approach and
expanded the model that reported the best result by adding
an additional representation,meanwhile retaining the already
used ones. For instance, considering the “Mid-fusion” model
receiving three representations, we took the best performing
“Mid-fusion” model with two representations (i.e. surface
normals + keypoints3d, “n + k”) and extended it with a third
one, curvature or depth, to obtain the “n + k + c” and the “n
+ k + d” “Mid-fusion” models.

A summary of the achieved performance is provided in
Fig. 5, which reports the SPL of the best performing model
of each pair {model type, number of visual representations
as input}.

First of all, all the proposed models largely outperformed
the “RGB Synthetic” baseline model, clearly showing the
presence of a crucial sim-real domain gap, which was
successfully reduced by the adoption of mid-level repre-
sentations. Compared to the “RGB Synthetic + CycleGAN”
baseline (last row of Table 1), all models reported a slightly
lower SPL and SR values, while not requiring any observa-
tion of the target domain to perform any adaptation. Indeed,
the two best performing mid-level models, namely the “SE
attention (avg pool)” model and the “Late-fusion” model,
both with 4 representations as input, achieved an SPL of
0.5440 and 0.5561 respectively, against the 0.5985 of the
“RGB Synthetic + CycleGAN” model. As expected, the
“RGB Synthetic + Real” model benefited from the super-
vised adaptation procedure, reporting an SPL of 0.8269 and a
near perfect SR of 0.9640. Interestingly, the “Simple” model
reported good performance even in its basic variant with
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a single visual representation as input, indicating the high
capability of mid-level representations to embed relevant
properties of the scene that are meaningful for the naviga-
tion task. Increasing the number of input representations, we
can observe an improvement of the performance with 2 and
4 representations, but a decrease in the case of 3. We hypoth-
esize that this inconsistent behavior may be caused by the
compact size of the considered model that, together with a

very simple representations fusion scheme, could have failed
to correctlymanage the additional quantity of data received as
input. A similar behavior can be observed with the “SE atten-
tion (max pool)” model and the “Mid-fusion” model, whose
results increased with 3 representations and dropped with
4 representations. In contrast, the “SE attention (avg pool)”
model reported the same performance when passing from 2
to 3 input representations and showed a significant improve-

Table 1 Performance of all the
considered visual navigation
models, evaluated on realistic
navigation episodes in
simulation using the proposed
evaluation tool

Mid-level representations Navigation model SPL SR
RGB Synthetic SE-ResNeXt50 0.2610 0.3990
RGB Synthetic + Real SE-ResNeXt50 0.8269 0.9640
RGB Synthetic + CG SE-ResNeXt50 0.5985 0.7500

(surface) normals (n) Simple model 0.4877 0.6180

keypoints3d (k) Simple model 0.4396 0.5740

curvature (c) Simple model 0.4262 0.5690

depth (d) Simple model 0.4417 0.5560

n+k Simple model 0.4972 0.6330

n+c Simple model 0.4295 0.5530

n+d Simple model 0.3515 0.4650

n+k+c Simple model 0.4349 0.5410

n+k+d Simple model 0.4314 0.5380

n+k+c+d Simple model 0.5233 0.6630

n+k SE att. (avg Pool) 0.5078 0.6400

n+c SE att. (avg Pool) 0.4683 0.6260

n+d SE att. (avg Pool) 0.3847 0.5330

n+k+c SE att. (avg Pool) 0.5014 0.6340

n+k+d SE att. (avg Pool) 0.4142 0.5490

n+k+c+d SE att. (avg Pool) 0.5440 0.6840

n+k SE att. (max Pool) 0.4878 0.6410

n+c SE att. (max Pool) 0.4488 0.5897

n+d SE att. (max Pool) 0.4585 0.6025

n+k+c SE att. (max Pool) 0.4943 0.6550

n+k+d SE att. (max Pool) 0.5101 0.6420

n+k+c+d SE att. (max Pool) 0.4487 0.5730

n+k Mid-fusion 0.4512 0.6150

n+c Mid-fusion 0.4286 0.5846

n+d Mid-fusion 0.4128 0.5627

n+k+c Mid-fusion 0.4851 0.6890

n+k+d Mid-fusion 0.4870 0.6850

n+k+c+d Mid-fusion 0.4441 0.5910

n+k Late-fusion 0.4944 0.6300

n+c Late-fusion 0.4845 0.6174

n+d Late-fusion 0.4573 0.5828

n+k+c Late-fusion 0.5329 0.6790

n+k+d Late-fusion 0.5284 0.6720

n+k+c+d Late-fusion 0.5561 0.7110

We compare 5 different architectures, each of them receiving between 1 and 4 mid-level representations as
input. Together with 3 RGB baselines, a total of 37 navigation models have been trained and tested. The
results are reported in terms of SPL (Success weighted by Path Length) and SR (Success Rate) at reaching
the navigation goal
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Fig. 5 Performance of visual navigationmodels evaluated in simulation
on realistic navigation episodes comprising real-world observations.
The performances are reported in terms of SPL (Success weighted by
Path Length)

ment when trained on 4 representations, overall achieving
one of the best results. Moreover, we can observe that it
always outperformed the “Simple” model receiving the same
number of input representations. This achievement confirms
the effectiveness of the feature-level attention mechanism,
meanwhile showing the importance of carefully designing
features aggregation scheme, given the performance gapwith
the similar “SE attention (max pool)” model.

Additionally, we noticed that some mid-level represen-
tations failed to make a useful contribution to navigation,
resulting in limited performance regardless of the fusion
model used. This is the case, for example, of the “depth”
mid-level representation which, when used in models using
two and three representations as input, has recorded perfor-
mances lower than or at most in line with those of the same
model using the same number of input representations and,
in the case of models using two representations (“n+d”, all
models) even lower than those achieved by the best naviga-
tionmodel using one representation.We hypothesize that this
unexpected behavior could be due to the redundancy of geo-
metric information captured by the mid-level representations
which can be substantial for the “normals” and “depth” mid-
level representations. In such circumstances the information
introduced by the additional representation could be unnec-
essary and the navigation model, in an attempt to exploit all
the mid-level representations provided as input, could fail in
the process, leading to inferior results.

The “Late-fusion” model showed the most consistent
behavior, with a performance that increased proportion-
ally with the number of input representations. Late-fusion

Fig. 6 Performance of visual navigation models evaluated in the real-
world using the real robotic platform. The performances are reported
in terms of SPL (Success weighted by Path Length)

achieved the best result among models with 3 representa-
tions and the absolute best result with 4 representations, with
an SPL of 0.5561 and a SR of 0.7110. We believe that the
overall model benefited from the specialization of the dif-
ferent branches on given mid-level representations, that had
the chance to independently learn the meaningful informa-
tion to retain from the input representations. With the policy
fusionmodule then, themodel had the chance to decidewhich
branch is less ormore likely to output an optimal action, given
the specific perception.

5.2 Evaluation in the real world

Fig. 6 reports the performances obtained by models in the
real-world evaluation across all the navigation episodes. First
of all, almost all models successfully reached the navigation
goals, with the exception of the “Simple”model, which failed
in 1 trial out of 18 (the total number of executed trajectories).

Taking a look at the baselines, as expected the “RGB Syn-
thetic” model reported the lowest result, confirming that a
navigation policy trained in simulation can not be directly
transferred to the real world due to the persistency of a sim-
real domain shift, that should be addressed with the design of
appropriate tools. Interestingly, the “RGBSynthetic +Cycle-
GAN” model returned the best result among the baselines,
suggesting that even a general unsupervised domain adap-
tation technique can effectively help the visual navigation
model to address the domain gap.

Generally, all the proposed mid-level representation mod-
els reported good results, with an average SPL of 0.7103.
The “Simple” model with a single visual representation,
it reported a remarkable SPL of 0.6906, which competes
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with the result of the “RGB Synthetic + Real” baseline. The
“Simple” model with 2 representations reported an even bet-
ter result, surpassing the performance of all the baselines,
with an SPL of 0.8029. Although this promising improve-
ment, increasing the number of input representations did not
lead to better results. As already hypothesized in the previ-
ous subsection, this may be caused by the basic architecture
of the model, which limits the scaling of performance with
the increase of the input representations. The “SE attention
(avg pool)” model achieved interesting performance, with
the model trained on 2 representations reporting an SPL of
0.7581, greater than the models trained on 3 and 4 represen-
tations. Also, the “SE attention (max pool)” reported similar
results, with amaximumSPL of 0.7385 for themodel trained
on 4 representations. Both models showed a limited ability
to benefit from the additional input, with stable or slightly
decreasing performance. In contrast, a different trend can
be observed with the “Mid-fusion” and the “Late-fusion”
models, whose performance increased with the number of
input representations, both reaching two peaks of 0.7603 and
0.7497 for the “Mid-fusion” and the “Late-fusion” models
with 4 representations respectively. In this case, the models
succeeded at exploiting the extra input, positioning them-
selves among the best performing navigation models.

A more detailed overview of the real-world results is
provided by Fig. 7, which reports the average SPL values
relative to each of the considered real-world trajectories. As
expected, in episode 1 most of the navigation models suc-
ceeded at following the optimal path, that was short and free
of obstacles. Similar results are reported for episode 2, that
presents a more challenging scenario but that was success-
fullymanaged bymost of the proposedmodels, with very few
differences. In the episodes from 3 to 6we can observe a gen-
eral decrease in performance, given that more sophisticated
reasoning ability are required to face the complexity of the
trajectories. The “Simple” model with 2 representations per-
formed consistently well in all episodes, outperforming all
the proposed models in episodes 1, 2, 4, and still reporting
competitive results in the remaining ones. The “SE attention
(avg pool)” model with 2 representations excelled in episode
5, the one with the longer trajectory, and performed reason-
ablywell in the rest of the episodes. Good performanceswere
also achieved by the “Late-fusion” model with 4 represen-
tations, which showed how using a multi-source input and a
more complex architecture can lead to amore stable behavior
across a variety of different scenarios, consistently reporting
superior or at least comparable performance in each episode
relative to the “Simple” model with a single representation.

In summary, we can observe that using a spectrum of
mid-level representations is a viable approach to designing
robust visual navigation models. From the analysis we car-
ried out, no single model has prevailed over the others, but
many of them showed to performwell in complex navigation

Fig. 7 Performance of navigation models in the real world using the
real robotic platform, reported for each of the considered trajectories
separately. The episodes differ for their complexity, as can be seen from
the evolution of the results

trajectories. Indeed, they achieved better results compared
to a classic, single representation model, and their results
matched or exceeded the ones of navigation models that had
access to observations of the target domain during training
(the “RGB Synthetic + Real” and the “RGB Synthetic +
CycleGAN” baselines).

To measure the ability of the proposed evaluation tool
to estimate the expected performance of a visual naviga-
tionmodel, we replicated the proposed real-world navigation
episodes inside the Habitat simulator, to then run an evalu-
ation following the same setup of the real world evaluation.
In Fig. 8, it is possible to observe the scatter plot that relates
real-world and evaluation performances in terms of SPL, rel-
ative to all navigation models. Overall, the proposed tool
appears to provide a good estimation of the models perfor-
mance.We conducted a statistical analysis on the relationship
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between the validation SPL and the real-world SPL, which
revealed a Pearson correlation coefficient equal to 0.5164,
with an associated p-value of 8.4396 · 10−8, which is below
the significance level of 0.05. The confidence interval of
the Pearson correlation coefficient for a confidence level of
0.95 is equal to [0.3515, 0.6503]. This analysis indicates that
there is a statistically significant positive correlation between
the validation SPL and the real-world SPL. A linear regres-
sion analysis between the validation SPL and real-world SPL
further reveals very almost zero p-values, well below the sig-
nificance level of 0.05, also for the estimation of the intercept
and the coefficient associated to the validation SPL, which
highlights how the estimation of the position and slope of
the regression line shown in Fig. 8 is statistically signifi-
cant. Specifically, we obtained confidence intervals equal to
[0.2880, 0.5720] and [0.3350, 0.6830] for the intercept and
coefficient of the validation SPL respectively. The confidence
intervals have been obtained considering a confidence level
of 0.95. Given the analysis above, we believe that, despite the
uncertainty, the graph provides a fair indication of the tool’s
ability to obtain a good picture of the expected real-world
navigation performance. Additionally, we reported the per-
centage of SPL values correctly estimated by the proposed
evaluation tool, varying the accepted estimation error. In par-
ticular, the estimation is considered correct if the SPL value
measured in the real-world test was at most x points worse.

Fig. 8 SPL values estimated by our tool in simulation, vs. SPL val-
ues measured in the real-world, after performing the same navigation
episodes. Each point represents a navigation model, evaluated on a spe-
cific trajectory. The red line represents the line of best fit of the data
points, while the red shadow represents the confidence interval of Pear-
son correlation coefficient for a confidence level of 0.95. Despite the
uncertainty, the graph provides a fair indication of the tool’s ability to
obtain a good picture of the expected real-world navigation performance

We considered this metric to understand if an increment in
the estimated performance reflects an increment in real-world
performance, still allowing amargin of error. More than 70%
of the estimated performance values were off by at most
0.1 SPL points, and more than 85% of the estimated perfor-
mance reported an SPLvalue thatwas atmost 0.2 points apart
from the real SPL performance. We believe that the obtained
results are fairly satisfactory, given the benefit offered by the
evaluation tool in termsof saved time and resources, normally
required to assess the performance of a navigation policy in
the real world with a real robotic platform.

5.3 Generalization to unseen environments

Additional experiments were conducted to verify the ability
of the proposed navigation models to generalize to environ-
ments not seen during training. In particular, since we are
interested in testing the quality of the navigation policies
on real environments, we decided to leverage the already
collected realistic 3D model comprising real-world observa-
tions and use it as the test environment, then changing the
training scenes. We therefore chose the navigation model
that reported the best results (“Late-fusion n+k+c+d”) and
trained it on the Gibson dataset scenes (Xia et al., 2018).
Specifically, we trained a model on the 72 scenes of the
Gibson training set split proposed by Savva et al. (2019)
(“Late-fusion-72”) and another model trained on only one
scene of the Gibson dataset (“Late-fusion-1"), chosen specif-
ically for having similar properties to the proposed office
environment. We decided to consider these two scenarios for
two reasons: (1) verify the ability of the navigation model to
generalize on new environments when a limited number of
training environments is adopted, while still using domain-
invariant visual representations; (2) verify if scaling up the
number of training scenes improves the generalization capa-
bility of the model on real environments. The trained models
were then evaluated in simulation on the realistic navigation
episodes of the proposed environment. The “Late-fusion-1”
model achieved a low SPL value of 0.0654, while the “Late-
fusion-72” model achieved a higher SPL value of 0.2786.
These results show the presence of a significant difference
with the results obtained by the navigation models trained
and tested on the same environment but using synthetic and
real-world observations, respectively. Increasing the number
of training scenes has certainly led to an increase in perfor-
mance, which however remains far from those obtained by
the proposed navigation models. The results suggest that to
achieve optimal results, such as to allow the deployment of
the system in real environments, it is necessary to train or at
least fine-tune the navigation policy on the synthetic version
of the specific target environment.
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6 Conclusion

In this work we investigated the problem of learning robust
visual navigation policies in simulation that can be success-
fully transferred in the real world. To achieve this goal, we
proposed an evaluation tool, built on top of the Habitat sim-
ulator, able to reproduce realistic navigation trajectories in
simulation, overcoming the limits posed by the evaluation
on a real robot. The tool has been then employed to eval-
uate the performance of a set of visual navigation models
performing a combination of mid-level representations, after
being trained solely in simulation. Our results suggest that
navigation models can benefit from the additional represen-
tations provided as input, given the remarkable performances
reported by most of the considered navigation models, even
when adopting simple representation fusion strategies. The
real-world test with a robotic platform confirmed the effec-
tiveness of the evaluation tool and the concrete possibility
to successfully deploy in the real world navigation policies
trained in simulation, without performing any domain adap-
tation. A further evaluation on new, diverse environments
could help provide more insights on the strengths and lim-
its of the proposed navigation models, in order to further
improve their capabilities to successfully operate in real-
world scenarios.
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